Consider what kind of heating and cooling system you want installed for the square footage of your home. Do you want a full system with a thermostat or a specific machine for the summer like a swamp cooler? Do you need a new furnace just for the winter? For any of these projects, the cost will vary depending on the quality, style and machine size you choose. If you have a tight budget, think of going smaller and upgrading over time. For example, if you can't afford to convert your entire home to solar power, you may want to consider only utilizing it to heat your water. Some other types of heating systems are:
It's always changing: Some newer thermostats take advantage of wireless technology. You can adjust your thermostat remotely so that if you leave and forget to adjust it, or if you are going to be home later than you thought, you can adjust it via your smartphone. Some can even give you reports on how efficient your system is performing based on usage. These are very efficient models, but they are also very expensive with some costing over $250.00.
If you are using existing ducting, it will have to be inspected. Proper ducting loses around 2% to 5% of your energy. Old, leaking ducts can lose 50% or more. A contractor will need to have the ducts inspected and replace any parts ahead of time. If you are changing the size of your HVAC system because of significant changes to your home, you might need to replace the ductwork regardless.
Window air conditioners cost less than central units, averaging $300. These systems generally suffice to keep a room cool on warm spring and summer days. They can bring added comfort for a reasonable price but are less powerful than a central air conditioner. If you have a bigger home with multiple rooms, you will probably need to have a larger system installed. Central air can cool several rooms at once, while window AC units usually only cover one or two rooms at a time.
The heat pump gained popularity in the 1950s in Japan and the United States.[13] Heat pumps can extract heat from various sources, such as environmental air, exhaust air from a building, or from the ground. Heat pumps transfer heat from outside the structure into the air inside. Initially, heat pump HVAC systems were only used in moderate climates, but with improvements in low temperature operation and reduced loads due to more efficient homes, they are increasing in popularity in cooler climates.
Prices for central-air HVAC systems will vary. The national average to hire an HVAC specialist is $2,920-$3,670 but can run as high as $5,000 or even $12,000 depending on the capacity you need and other factors. Installing central air conditioning requires an entire system that works together to draw hot air out of your home. The system includes an outdoor unit, which houses the condenser and compressor, and the evaporator coils. If you don’t have an existing duct system, ductwork will need to be installed, which will affect labor and material costs. Leaking or damaged ducts will also need to be replaced.
A Full Installation is the most common type of HVAC installation for a reputable contractor. The ductwork adds two days of labor and about $2,000 to $3,000 to the price, but realize that this is a very important part of your HVAC system. Although it might sound like a good idea to reduce HVAC installation cost and get a quick change-out, realize that there is dirt and debris collecting in your ducts, and the ducts themselves develop holes and full breaks over the lifetime of your unit, all of which may be hidden from sight by insulation. Remember, many contractors will push a quick change-out on you because it is easy and good money for them – you need to be involved and ask questions.
An air conditioning system's SEER is especially important if you live in a climate that changes temperature dramatically. The SEER is determined by the cooling output during the winter divided by its electric input during the winter. The higher the rating, the more efficient it will be. In January of 2006, the U.S. put standards in place for cooling units which are still in effect today. They must have a minimum SEER of 13. So, if you live in a home with a system installed before the new standards went into effect, consider having it replaced. SEER 13 units increase home efficiency by 30 percent.
An EER certifies the cooling efficiency of HVAC units. It's calculated by the rate of the cooling in British thermal units (Btus) per hour and divided by the rate of energy input in watts at a specific temperature. The calculation goes as BtuH/WATT at dry bulb (db) versus wet bulb (wb) temperatures. The optimal rating for a cooling unit is about 80db/67wb inside and 95db/75wb outside.
The performance of vapor compression refrigeration cycles[26] is limited by thermodynamics. These air conditioning and heat pump devices move heat rather than convert it from one form to another, so thermal efficiencies do not appropriately describe the performance of these devices. The Coefficient-of-Performance (COP) measures performance, but this dimensionless measure has not been adopted. Instead, the Energy Efficiency Ratio (EER) has traditionally been used to characterize the performance of many HVAC systems. EER is the Energy Efficiency Ratio based on a 35 °C (95 °F) outdoor temperature. To more accurately describe the performance of air conditioning equipment over a typical cooling season a modified version of the EER, the Seasonal Energy Efficiency Ratio (SEER), or in Europe the ESEER, is used. SEER ratings are based on seasonal temperature averages instead of a constant 35 °C (95 °F) outdoor temperature. The current industry minimum SEER rating is 14 SEER.[27][dead link]
It's always changing: Some newer thermostats take advantage of wireless technology. You can adjust your thermostat remotely so that if you leave and forget to adjust it, or if you are going to be home later than you thought, you can adjust it via your smartphone. Some can even give you reports on how efficient your system is performing based on usage. These are very efficient models, but they are also very expensive with some costing over $250.00.
Since the 1980s, manufacturers of HVAC equipment have been making an effort to make the systems they manufacture more efficient. This was originally driven by rising energy costs, and has more recently been driven by increased awareness of environmental issues. Additionally, improvements to the HVAC system efficiency can also help increase occupant health and productivity.[23] In the US, the EPA has imposed tighter restrictions over the years. There are several methods for making HVAC systems more efficient.
The liquid refrigerant is returned to another heat exchanger where it is allowed to evaporate, hence the heat exchanger is often called an evaporating coil or evaporator. As the liquid refrigerant evaporates it absorbs energy (heat) from the inside air, returns to the compressor, and repeats the cycle. In the process, heat is absorbed from indoors and transferred outdoors, resulting in cooling of the building.

They were quick to come out and diagnose the problem with my furnace, but I thought the estimate of $549 a bit high to replace the circuit board.  So called around and found Leo's Appliance in Concord that sells appliance parts and the circuit board was only $90.49 - that is the retail cost to me, so I imagine the wholesale cost is a lot less.  So BEWARE of this company since they wanted $500!!! to replace the circuit board which is located right in the front of the furnace - extremely easy to access.  I hate it that you cannot trust repair companies.


Energy efficiency can be improved even more in central heating systems by introducing zoned heating. This allows a more granular application of heat, similar to non-central heating systems. Zones are controlled by multiple thermostats. In water heating systems the thermostats control zone valves, and in forced air systems they control zone dampers inside the vents which selectively block the flow of air. In this case, the control system is very critical to maintaining a proper temperature.

CIBSE publishes several guides to HVAC design relevant to the UK market, and also the Republic of Ireland, Australia, New Zealand and Hong Kong. These guides include various recommended design criteria and standards, some of which are cited within the UK building regulations, and therefore form a legislative requirement for major building services works. The main guides are:


An alternative to packaged systems is the use of separate indoor and outdoor coils in split systems. Split systems are preferred and widely used worldwide except in North America. In North America, split systems are most often seen in residential applications, but they are gaining popularity in small commercial buildings. The split systems are a great choice for small buildings where ductwork is not feasible or where the space conditioning efficiency is of prime concern [20]. The benefits of ductless air conditioning systems include easy installation, no ductwork, greater zonal control, flexibility of control and quiet operation [21]. In space conditioning, the duct losses can account for 30% of energy consumption [22]. The use of minisplit can result in energy savings in space conditioning as there are no losses associated with ducting.
Capacitors -- Capacitors help your HVAC motor start from a standstill. Over time they can weaken. As they weaken, they cause the motor to run hotter. This can shorten the life expectancy of your motor. Once a capacitor fails, the whole motor will stop working. You usually won't notice that a capacitor has weakened until your motor stops turning on.
At the state level the rebates are still substantial. For example, switching to a zoned system can get you a $100 rebate from various A/C companies, and state rebates are also included. In Pennsylvania a high-efficiency air conditioner alone can get you up to $300, and a high-efficiency complete HVAC system can see up to $1000. Maryland's incentives get up to $1,250, with a $100 rebate on a tune up of an existing system.
The three major functions of heating, ventilation, and air conditioning are interrelated, especially with the need to provide thermal comfort and acceptable indoor air quality within reasonable installation, operation, and maintenance costs. HVAC systems can be used in both domestic and commercial environments. HVAC systems can provide ventilation, and maintain pressure relationships between spaces. The means of air delivery and removal from spaces is known as room air distribution.[3]
Although HVAC is executed in individual buildings or other enclosed spaces (like NORAD's underground headquarters), the equipment involved is in some cases an extension of a larger district heating (DH) or district cooling (DC) network, or a combined DHC network. In such cases, the operating and maintenance aspects are simplified and metering becomes necessary to bill for the energy that is consumed, and in some cases energy that is returned to the larger system. For example, at a given time one building may be utilizing chilled water for air conditioning and the warm water it returns may be used in another building for heating, or for the overall heating-portion of the DHC network (likely with energy added to boost the temperature).[4][5][6]

They were quick to come out and diagnose the problem with my furnace, but I thought the estimate of $549 a bit high to replace the circuit board.  So called around and found Leo's Appliance in Concord that sells appliance parts and the circuit board was only $90.49 - that is the retail cost to me, so I imagine the wholesale cost is a lot less.  So BEWARE of this company since they wanted $500!!! to replace the circuit board which is located right in the front of the furnace - extremely easy to access.  I hate it that you cannot trust repair companies.


If the AC doesn’t turn off, it may be time to clean the condensing unit. Dirty condenser coils won’t give off heat efficiently and will keep the unit running.  Another possibility: The contacts on the outdoor run relay may have welded together—something that can happen over time because of frequent electrical arcing at the relay. Before checking the run relay, turn off the power to the furnace and the condensing unit. Next, disassemble the relay and pry apart the contacts. This should do the trick until you buy a replacement—which you should do soon.

×