At the state level the rebates are still substantial. For example, switching to a zoned system can get you a $100 rebate from various A/C companies, and state rebates are also included. In Pennsylvania a high-efficiency air conditioner alone can get you up to $300, and a high-efficiency complete HVAC system can see up to $1000. Maryland's incentives get up to $1,250, with a $100 rebate on a tune up of an existing system.

HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels and senior living facilities, medium to large industrial and office buildings such as skyscrapers and hospitals, vehicles such as cars, trains, airplanes, ships and submarines, and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

SEER is useful for comparing one model to another much in the same way that a car's calculate MPG is useful. It's not an accurate prediction of exactly how efficient the system is, but it can tell you which one is more efficient. Also, since SEER is based on a "cooling season", what region you live in will determine how long or short your cooling season is.

A little simple math can help determine the size system you need. A rule of thumb is 20 BTUs per square foot. So, a 500 square foot room would need 10,000 BTUs to cool or warm it efficiently. This assumes that you live in a temperate region and have adequate insulation with no energy loss. In the real world, all units have some degree of energy loss. This is reflected in an HVAC system's SEER rating for cooling and AFUE rating for heating.
The HVAC industry is a worldwide enterprise, with roles including operation and maintenance, system design and construction, equipment manufacturing and sales, and in education and research. The HVAC industry was historically regulated by the manufacturers of HVAC equipment, but regulating and standards organizations such as HARDI, ASHRAE, SMACNA, ACCA, Uniform Mechanical Code, International Mechanical Code, and AMCA have been established to support the industry and encourage high standards and achievement.
An air conditioning system's SEER is especially important if you live in a climate that changes temperature dramatically. The SEER is determined by the cooling output during the winter divided by its electric input during the winter. The higher the rating, the more efficient it will be. In January of 2006, the U.S. put standards in place for cooling units which are still in effect today. They must have a minimum SEER of 13. So, if you live in a home with a system installed before the new standards went into effect, consider having it replaced. SEER 13 units increase home efficiency by 30 percent.

Indoor Fan Motor -- Indoor fans circulate the air from your house and through the system. Age and dust buildup are the two biggest contributing factors to their failure. When they are starting to fail they will often make noise. Failure of the fan will result in no heating or cooling, and if it is not repaired soon, it can cause other components to fail.
Engineers have pointed out some areas where efficiency of the existing hardware could be improved. For example, the fan blades used to move the air are usually stamped from sheet metal, an economical method of manufacture, but as a result they are not aerodynamically efficient. A well-designed blade could reduce electrical power required to move the air by a third.[28]

Filtration systems -- A second-stage filter is sometimes inserted & used to remove particulates such as pets, smoking or cooking, as well as other odors, gases, and VOCs (volatile organic compounds). A HEPA filter is also available to remove spores, pollens, bacteria and lung-damaging particles. There are also systems that use ultraviolet (UV) light to protect against bacteria and germs.
Capacitors -- Capacitors help your HVAC motor start from a standstill. Over time they can weaken. As they weaken, they cause the motor to run hotter. This can shorten the life expectancy of your motor. Once a capacitor fails, the whole motor will stop working. You usually won't notice that a capacitor has weakened until your motor stops turning on.
Free cooling systems can have very high efficiencies, and are sometimes combined with seasonal thermal energy storage so that the cold of winter can be used for summer air conditioning. Common storage mediums are deep aquifers or a natural underground rock mass accessed via a cluster of small-diameter, heat-exchanger-equipped boreholes. Some systems with small storages are hybrids, using free cooling early in the cooling season, and later employing a heat pump to chill the circulation coming from the storage. The heat pump is added-in because the storage acts as a heat sink when the system is in cooling (as opposed to charging) mode, causing the temperature to gradually increase during the cooling season.
The AC contactor (relay) and start/run capacitor(s) (see illustration below) fail most often and are inexpensive. So it's a safe bet to buy and install those parts right away, especially if your air conditioning service unit is older than five years. The condenser fan motor can also fail, but it runs about $150 — hold off buying that unless you're sure that's the culprit.
If your central air conditioner will not cool but you can hear it running, it may just need to be cleaned. Whether or not this is the cause of the problem, it’s a good early remedy to try. Plan to do this on a relatively warm day. Never use a power washer for this—it can damage the fins. The following are guidelines; always refer to your owner’s manual. Note: Always turn off the power before cleaning the unit.
×