Feel perfectly comfortable at home with our innovative Lennox Residential heating, cooling and air quality systems. Lennox manufactures high-efficiency HVAC systems including furnaces and air conditioners designed to conserve energy and save money. Our complementing air filtration systems, humidifiers and dehumidifiers help keep indoor air quality healthy and clean.
The three major functions of heating, ventilation, and air conditioning are interrelated, especially with the need to provide thermal comfort and acceptable indoor air quality within reasonable installation, operation, and maintenance costs. HVAC systems can be used in both domestic and commercial environments. HVAC systems can provide ventilation, and maintain pressure relationships between spaces. The means of air delivery and removal from spaces is known as room air distribution.[3]

An alternative to packaged systems is the use of separate indoor and outdoor coils in split systems. Split systems are preferred and widely used worldwide except in North America. In North America, split systems are most often seen in residential applications, but they are gaining popularity in small commercial buildings. The split systems are a great choice for small buildings where ductwork is not feasible or where the space conditioning efficiency is of prime concern [20]. The benefits of ductless air conditioning systems include easy installation, no ductwork, greater zonal control, flexibility of control and quiet operation [21]. In space conditioning, the duct losses can account for 30% of energy consumption [22]. The use of minisplit can result in energy savings in space conditioning as there are no losses associated with ducting.
An EER certifies the cooling efficiency of HVAC units. It's calculated by the rate of the cooling in British thermal units (Btus) per hour and divided by the rate of energy input in watts at a specific temperature. The calculation goes as BtuH/WATT at dry bulb (db) versus wet bulb (wb) temperatures. The optimal rating for a cooling unit is about 80db/67wb inside and 95db/75wb outside.

A little simple math can help determine the size system you need. A rule of thumb is 20 BTUs per square foot. So, a 500 square foot room would need 10,000 BTUs to cool or warm it efficiently. This assumes that you live in a temperate region and have adequate insulation with no energy loss. In the real world, all units have some degree of energy loss. This is reflected in an HVAC system's SEER rating for cooling and AFUE rating for heating.
The three major functions of heating, ventilation, and air conditioning are interrelated, especially with the need to provide thermal comfort and acceptable indoor air quality within reasonable installation, operation, and maintenance costs. HVAC systems can be used in both domestic and commercial environments. HVAC systems can provide ventilation, and maintain pressure relationships between spaces. The means of air delivery and removal from spaces is known as room air distribution.[3]
Central, "all-air" air-conditioning systems (or package systems) with a combined outdoor condenser/evaporator unit are often installed in North American residences, offices, and public buildings, but are difficult to retrofit (install in a building that was not designed to receive it) because of the bulky air ducts required. (Minisplit ductless systems are used in these situations.) Outside of North America, packaged systems are only used in limited applications involving large indoor space such as stadiums, theatres or exhibition halls.
An important component of natural ventilation is air change rate or air changes per hour: the hourly rate of ventilation divided by the volume of the space. For example, six air changes per hour means an amount of new air, equal to the volume of the space, is added every ten minutes. For human comfort, a minimum of four air changes per hour is typical, though warehouses might have only two. Too high of an air change rate may be uncomfortable, akin to a wind tunnel which have thousands of changes per hour. The highest air change rates are for crowded spaces, bars, night clubs, commercial kitchens at around 30 to 50 air changes per hour.[17]
If the condenser coils are clogged, the compressor can overheat and shut down. You'll experience intermittent periods of minimal cooling, followed by no cooling. Even if you're “sure” the condenser coils are clean, clean them again. Turn off the power. Flip the air conditioning service and furnace circuit breakers in your main electrical panel to the “Off” position. Next, turn off the power switch right at the furnace or air handler. Then yank the disconnect block (Photo 1) and clean the condenser coils (Photo 2). If the air conditioning service still doesn't work properly after you've cleaned the condenser coils, installed a new filter and opened all the supply vents, proceed with the following repairs. Your AC won't work fully unless you do this.
Because an air conditioner moves heat between the indoor coil and the outdoor coil, both must be kept clean. This means that, in addition to replacing the air filter at the evaporator coil, it is also necessary to regularly clean the condenser coil. Failure to keep the condenser clean will eventually result in harm to the compressor, because the condenser coil is responsible for discharging both the indoor heat (as picked up by the evaporator) and the heat generated by the electric motor driving the compressor.
You might also want to check your home for thermal insulation if you live in extreme heat or freezing temperatures. Insulation keeps the heat and cool air in your home, which can lead to a lower electric bill. If the heated or cool air leaks out, your system turns on more often. There are various types of insulation that you can install in your home and a home energy auditor can point out the best places for it in your house.
Your contractor will do a load calculation to determine the proper central air conditioning unit for your home. This calculation accounts for the climate, size, shape and orientation of your home, as well as its square footage. A professional will also look at the insulation, windows, walls, floors and other materials that compose your home. He/she will then examine any leaks, seals and existing ducts or vents.
If you believe that the AC's not working or you're getting little or no cold air, check these three things first. Make sure all the registers in the house are wide open. Then be sure the furnace filter is clean. Then go outside and clean off the condenser coils (Photo 2). If several registers were closed or the filter was clogged, the reduced airflow could have caused the evaporator coil to ice up and stop cooling your home. If you've changed the filter and opened all the registers and you're still not getting airflow at the registers, deice the A-coil. Move the thermostat mode switch from “Cooling” to “Off” and move the fan switch from “Auto” to “On.” Let the blower run for at least 30 minutes or until there's good airflow at the registers. Then turn the AC back on to test it. If it works for the next 12 hours, you've solved the problem.
HVAC services is our go to contractor when it comes to our HVAC needs. Back in 2013, we were dealt some unforeseeable home projects, as our  HVAC was failing and needed to replace the whole system, e.g. Furnace, Blower, A/C, Condenser, Vents, etc... We reached out to a few HVAC companies (Contra Costa Heating and Air, EP builders, High Performance Heating and Air) so we could compare the bids for the job. We have had some issues with past contractors and after thoroughly screening a few of the above mentioned HVAC contractors, we awarded the bid to HVAC services because of their superior customer service and very reasonable pricing.
If you believe that the AC's not working or you're getting little or no cold air, check these three things first. Make sure all the registers in the house are wide open. Then be sure the furnace filter is clean. Then go outside and clean off the condenser coils (Photo 2). If several registers were closed or the filter was clogged, the reduced airflow could have caused the evaporator coil to ice up and stop cooling your home. If you've changed the filter and opened all the registers and you're still not getting airflow at the registers, deice the A-coil. Move the thermostat mode switch from “Cooling” to “Off” and move the fan switch from “Auto” to “On.” Let the blower run for at least 30 minutes or until there's good airflow at the registers. Then turn the AC back on to test it. If it works for the next 12 hours, you've solved the problem.
Ductwork pinging or popping. If you hear a pinging or popping sound coming from metal ductwork, this may be caused by thermal expansion or by air blowing past a loose flap of metal. Track along the duct runs, listening for the sound. If you find it, make a small dent in the sheet metal to provide a more rigid surface that’s less likely to move as it heats and cools.
×