HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels and senior living facilities, medium to large industrial and office buildings such as skyscrapers and hospitals, vehicles such as cars, trains, airplanes, ships and submarines, and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

Within the construction sector, it is the job of the building services engineer to design and oversee the installation and maintenance of the essential services such as gas, electricity, water, heating and lighting, as well as many others. These all help to make buildings comfortable and healthy places to live and work in. Building Services is part of a sector that has over 51,000 businesses and employs represents 2%-3% of the GDP.
CIBSE publishes several guides to HVAC design relevant to the UK market, and also the Republic of Ireland, Australia, New Zealand and Hong Kong. These guides include various recommended design criteria and standards, some of which are cited within the UK building regulations, and therefore form a legislative requirement for major building services works. The main guides are:
Installation: Replacement is quite easy, especially when an old refrigerant line set can be used. If the set is worn, it’s much better to pay the extra $400-$600 to replace it rather than risking it leaking later. When your AC loses refrigerant, you lose your cool air and the compressor is at risk of failing. A new installation means installing a coil in your furnace or air handler, running the line set between it and the coil in the condensing unit and adding refrigerant, if needed. Most ACs come pre-charged for 20-30 feet of line. If the line set is longer, a small amount of refrigerant is added.
An EER certifies the cooling efficiency of HVAC units. It's calculated by the rate of the cooling in British thermal units (Btus) per hour and divided by the rate of energy input in watts at a specific temperature. The calculation goes as BtuH/WATT at dry bulb (db) versus wet bulb (wb) temperatures. The optimal rating for a cooling unit is about 80db/67wb inside and 95db/75wb outside.
Refrigerant Metering Device -- Every HVAC system has one of these, and heat pumps have two. They regulate the amount of refrigerant going through your air-conditioner. If it fails, either too much or too little refrigerant will course along the lines and either not perform well or will overwhelm the compressor and cause it to fail. A total failure of this component will result in a complete loss of operation.
The liquid refrigerant is returned to another heat exchanger where it is allowed to evaporate, hence the heat exchanger is often called an evaporating coil or evaporator. As the liquid refrigerant evaporates it absorbs energy (heat) from the inside air, returns to the compressor, and repeats the cycle. In the process, heat is absorbed from indoors and transferred outdoors, resulting in cooling of the building.
So, naturally I respond with, “you don’t tell your doctor which medication to prescribe you, do you?” The point is, on the residential level, who you get to install your HVAC unit is far more important than which unit you choose.  Keep your options open and let your HVAC contractor make a few recommendations – that’s why you spent time finding a reputable contractor!
Deciding if central air is worth the cost depends on your needs and local housing market. If you live in a hotter climate, it can definitely be worth the price. Not only can it keep your home at a comfortable temperature, but air conditioning can even save lives during extreme heat waves. But in a milder zone without severe temperatures, window units, fans or the breeze from an open window could be adequate.
The cost to replace a central air conditioner is about $5,000. However, this price varies depending on the size of your home and the difficulty of the project. It can cost as much as $12,500 to replace an AC unit. The labor required to remove and dispose of the old system adds to the price. The size of your home, brand of AC unit and ductwork complexity can all raise the cost as well.
Ventilating or ventilation (the V in HVAC) is the process of exchanging or replacing air in any space to provide high indoor air quality which involves temperature control, oxygen replenishment, and removal of moisture, odors, smoke, heat, dust, airborne bacteria, carbon dioxide, and other gases. Ventilation removes unpleasant smells and excessive moisture, introduces outside air, keeps interior building air circulating, and prevents stagnation of the interior air.

An AC contactor is a $25 mechanical relay that uses low-voltage power from the thermostat to switch 220-volt high-amperage current to the compressor and condenser fan. AC contactors can wear out and are at the top of the list of common air conditioning service failures. Even if your AC contactor is working, it pays to replace it every five years or so. Unscrew the old AC contactor before removing the wires. Then move the wires to the new unit (Photo 6).

To qualify for a tax credit from the federal government, you must save the manufacturer's certificate from your system. The IRS won't require the certificate at the time you file your federal tax forms, but they recommend keeping it with your records in case of an audit. It proves that you purchased a qualifying product. The government offers tax credits for:
Replacing a capacitor is easy. Just take a photo of the wires before disconnecting anything (you may need a reference later on). Then discharge the stored energy in the old capacitor (Photo 4). Use needle-nose pliers to pluck one wire at a time from the old capacitor and snap it onto the corresponding tab of the new capacitor. The female crimp connectors should snap tightly onto the capacitor tabs. Wiggle each connector to see if it's tight. If it's not, remove the connector and bend the rounded edges of it so it makes a tighter fit on the tab. When you've swapped all the wires, secure the new capacitor (Photo 5).
An air conditioning system, or a standalone air conditioner, provides cooling and humidity control for all or part of a building. Air conditioned buildings often have sealed windows, because open windows would work against the system intended to maintain constant indoor air conditions. Outside, fresh air is generally drawn into the system by a vent into the indoor heat exchanger section, creating positive air pressure. The percentage of return air made up of fresh air can usually be manipulated by adjusting the opening of this vent. Typical fresh air intake is about 10%.
You can install the greatest HVAC system ever built, but if your house is not insulated well, it's only going to end up costing you more money. Older homes may have fiberglass insulation that has broken down due to pests, moisture, or improper installation. Spray foam insulation can be damaged by careless repair or modification work or can be improperly installed. If your insulation in compromised, your attempts to save money and be comfortable will be in vain.
Contact/Relay -- Relays are electronically controlled switches that activate the various components of your HVAC system. They manage everything from the power going to the motor to automatic dampers, humidifiers, etc. Most of them are controlled by the thermostat. The most common failure for a relay is being stuck in the "open" position. Separated from its assigned contact point, it fails to complete the connection and send the message to whatever it was supposed to operate. This failure usually occurs from use over time. Each time a relay connects and sends its signal, the electrical arcing from point to point eventually causes wear and tear.

Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −70 °F (−57 °C) low temperature or cool a building in the highest temperature ever recorded in the US—134 °F (57 °C) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A few feet below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 6 feet (1.8 m) underground, temperatures generally only range from 45 to 75 °F (7 to 24 °C).
CIBSE publishes several guides to HVAC design relevant to the UK market, and also the Republic of Ireland, Australia, New Zealand and Hong Kong. These guides include various recommended design criteria and standards, some of which are cited within the UK building regulations, and therefore form a legislative requirement for major building services works. The main guides are:

Capacitors -- Capacitors help your HVAC motor start from a standstill. Over time they can weaken. As they weaken, they cause the motor to run hotter. This can shorten the life expectancy of your motor. Once a capacitor fails, the whole motor will stop working. You usually won't notice that a capacitor has weakened until your motor stops turning on.
DIY: Most DIY installations go smoothly. The major brands have compatibility checkers to see which of their models will work with the wiring your old thermostat is using. Potential problems involve the need for a C-wire, or common wire, when the existing bundle doesn’t include one. There are solutions discussed in our Thermostat Buying Guide, linked to below.
The Chartered Institution of Building Services Engineers is a body that covers the essential Service (systems architecture) that allow buildings to operate. It includes the electrotechnical, heating, ventilating, air conditioning, refrigeration and plumbing industries. To train as a building services engineer, the academic requirements are GCSEs (A-C) / Standard Grades (1-3) in Maths and Science, which are important in measurements, planning and theory. Employers will often want a degree in a branch of engineering, such as building environment engineering, electrical engineering or mechanical engineering. To become a full member of CIBSE, and so also to be registered by the Engineering Council UK as a chartered engineer, engineers must also attain an Honours Degree and a master's degree in a relevant engineering subject.
Excalibur Water Systems helps solve the water challenges around the globe with water solutions for any possible water concerns in: water hardness, filtration of any contaminant, bacteria removal and high purity water needs and also comes with a warranty of up to 20 years at no extra cost. The best warranty for the water treatment equipment industry.

An energy recovery ventilator: This component helps improve the air inside your home by swapping it out with fresh air from the outside. During the winter months when houses are closed up to keep out the cold, the air inside becomes a handy way for colds and flu to infect an entire family. By circulating outside air inside, the health of your family will have a better chance.


When central air conditioning service fails during a heat spell, you may have to wait days for an HVAC repair technician or an ac contractor to show up, and you'll probably pay at least several hundred for the repair. But if you're comfortable working around electricity and are willing to spend about $50 on parts, you can probably repair your air conditioning service yourself in about two hours and save about $225 on parts markup and labor.
×