Without proper ventilation, carbon monoxide can be lethal at concentrations of 1000 ppm (0.1%). However, at several hundred ppm, carbon monoxide exposure induces headaches, fatigue, nausea, and vomiting. Carbon monoxide binds with hemoglobin in the blood, forming carboxyhemoglobin, reducing the blood's ability to transport oxygen. The primary health concerns associated with carbon monoxide exposure are its cardiovascular and neurobehavioral effects. Carbon monoxide can cause atherosclerosis (the hardening of arteries) and can also trigger heart attacks. Neurologically, carbon monoxide exposure reduces hand to eye coordination, vigilance, and continuous performance. It can also affect time discrimination.[15]
Stick with a maximum of 16 SEER units in most cases.  Like I said above, contractors push higher SEER units because they make more money, but these units can be expensive at this stage of development, and can drive up your HVAC installation cost.  21 SEER units run about twice the price of a 14 SEER unit, so unless you live in a desert and plan on being there for 30 more years... Likewise, a 16 SEER unit typically costs only about $600-$1,000 more than a 14 SEER, and will usually pay for itself over the lifetime of the unit.
Your contractor will do a load calculation to determine the proper central air conditioning unit for your home. This calculation accounts for the climate, size, shape and orientation of your home, as well as its square footage. A professional will also look at the insulation, windows, walls, floors and other materials that compose your home. He/she will then examine any leaks, seals and existing ducts or vents.

Mitsubishi Electric is a world leader in air conditioning systems for residential, commercial and industrial use. Challenged to create air conditioning systems that provide exemplary performance in the wide-ranging climatic conditions found throughout Japan, our engineers develop amazingly sophisticated yet durable units and systems capable of constant use under virtually any natural climatic condition on earth.
Some systems include an "economizer mode", which is sometimes called a "free-cooling mode". When economizing, the control system will open (fully or partially) the outside air damper and close (fully or partially) the return air damper. This will cause fresh, outside air to be supplied to the system. When the outside air is cooler than the demanded cool air, this will allow the demand to be met without using the mechanical supply of cooling (typically chilled water or a direct expansion "DX" unit), thus saving energy. The control system can compare the temperature of the outside air vs. return air, or it can compare the enthalpy of the air, as is frequently done in climates where humidity is more of an issue. In both cases, the outside air must be less energetic than the return air for the system to enter the economizer mode.
Although HVAC is executed in individual buildings or other enclosed spaces (like NORAD's underground headquarters), the equipment involved is in some cases an extension of a larger district heating (DH) or district cooling (DC) network, or a combined DHC network. In such cases, the operating and maintenance aspects are simplified and metering becomes necessary to bill for the energy that is consumed, and in some cases energy that is returned to the larger system. For example, at a given time one building may be utilizing chilled water for air conditioning and the warm water it returns may be used in another building for heating, or for the overall heating-portion of the DHC network (likely with energy added to boost the temperature).[4][5][6]
In addition to the information below, see these two articles for the general care and maintenance of your air conditioner: Preparing Your Air Conditioner for Summer and How to Replace Furnace & AC Filters. Most noteworthy, you should replace the filters at least twice a year, before the heating and cooling seasons. For information on furnace problems, please see Furnace Not Working.
×