I originally took off one star because of the SNAFU with getting the part ordered.  When Alberto called me on the phone he admitted the person had "gotten busy with other things" and apologized.  THAT was taking the high road and I was impressed by that.  Sadly, for reasons I won't guess at, Alberto has decided to take the low road in his comments and imply that they got the part as quickly as possible.  Well, we called at 2:30 so did someone spend six and a half hours finding the part??  That seems very doubtful.


Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −70 °F (−57 °C) low temperature or cool a building in the highest temperature ever recorded in the US—134 °F (57 °C) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A few feet below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 6 feet (1.8 m) underground, temperatures generally only range from 45 to 75 °F (7 to 24 °C).
A little simple math can help determine the size system you need. A rule of thumb is 20 BTUs per square foot. So, a 500 square foot room would need 10,000 BTUs to cool or warm it efficiently. This assumes that you live in a temperate region and have adequate insulation with no energy loss. In the real world, all units have some degree of energy loss. This is reflected in an HVAC system's SEER rating for cooling and AFUE rating for heating.
Indoor Coil -- The indoor coil is a heat transfer device. It absorbs the heat from the inside of the house and passes it on to the refrigerant and is pumped outside. Dust that builds up on the coil can hamper its ability to absorb heat. High heat transference coils use very thin metal. Airborne chemicals can cause corrosion which leads to leaks. The constant vibration of the compressor can also cause solder joints to weaken and leak. An indoor coil may operate for weeks with a tiny leak, and you may not notice the loss in performance right away. As soon as a leak is made known, it should be replaced or repaired immediately.
Stick with a maximum of 16 SEER units in most cases.  Like I said above, contractors push higher SEER units because they make more money, but these units can be expensive at this stage of development, and can drive up your HVAC installation cost.  21 SEER units run about twice the price of a 14 SEER unit, so unless you live in a desert and plan on being there for 30 more years... Likewise, a 16 SEER unit typically costs only about $600-$1,000 more than a 14 SEER, and will usually pay for itself over the lifetime of the unit.

Indoor Fan Motor -- Indoor fans circulate the air from your house and through the system. Age and dust buildup are the two biggest contributing factors to their failure. When they are starting to fail they will often make noise. Failure of the fan will result in no heating or cooling, and if it is not repaired soon, it can cause other components to fail.
Filtration systems -- A second-stage filter is sometimes inserted & used to remove particulates such as pets, smoking or cooking, as well as other odors, gases, and VOCs (volatile organic compounds). A HEPA filter is also available to remove spores, pollens, bacteria and lung-damaging particles. There are also systems that use ultraviolet (UV) light to protect against bacteria and germs.

Just had my HVAC System restored and working again on a Sunday and before the 104 weather tomorrow!!!! Called Big Mountain Heating and Air and spoke to very helpful woman named Martina. She connected me to a Technician named Josh. He was at my home within a few minutes and tackled my Honey Well system's issues. He is both skilled, personable and better yet, he got my system up and going and safe. He installed a surge suppressor on the system to prevent power surges that can kick off any system, when the electric company has to reduce power, etc.  I will be using Big Mountain in the future. Truly grateful for such good service and people. Thank you!  I recommend this firm to everyone!
Some systems include an "economizer mode", which is sometimes called a "free-cooling mode". When economizing, the control system will open (fully or partially) the outside air damper and close (fully or partially) the return air damper. This will cause fresh, outside air to be supplied to the system. When the outside air is cooler than the demanded cool air, this will allow the demand to be met without using the mechanical supply of cooling (typically chilled water or a direct expansion "DX" unit), thus saving energy. The control system can compare the temperature of the outside air vs. return air, or it can compare the enthalpy of the air, as is frequently done in climates where humidity is more of an issue. In both cases, the outside air must be less energetic than the return air for the system to enter the economizer mode.
If your compressor doesn’t have an overload button and you hear it humming or buzzing, poke a screwdriver or stick down through the top grille and try to spin the fan blades clockwise. If doing this gives the fan enough of a boost to get it going, the unit has a faulty capacitor that must be replaced. See How to Test and Replace an AC Run Capacitor, above.
×