The Chartered Institution of Building Services Engineers is a body that covers the essential Service (systems architecture) that allow buildings to operate. It includes the electrotechnical, heating, ventilating, air conditioning, refrigeration and plumbing industries. To train as a building services engineer, the academic requirements are GCSEs (A-C) / Standard Grades (1-3) in Maths and Science, which are important in measurements, planning and theory. Employers will often want a degree in a branch of engineering, such as building environment engineering, electrical engineering or mechanical engineering. To become a full member of CIBSE, and so also to be registered by the Engineering Council UK as a chartered engineer, engineers must also attain an Honours Degree and a master's degree in a relevant engineering subject.
The AC contactor (relay) and start/run capacitor(s) (see illustration below) fail most often and are inexpensive. So it's a safe bet to buy and install those parts right away, especially if your air conditioning service unit is older than five years. The condenser fan motor can also fail, but it runs about $150 — hold off buying that unless you're sure that's the culprit.

Reinstall the access panel and disconnect block. Turn on the circuit breaker and furnace switch. Then set the thermostat to a lower temperature and wait for the AC to start (see “Be Patient at Startup,” below). The compressor should run and the condenser fan should spin. If the compressor starts but the fan doesn't, the fan motor is most likely shot. Shut off the power and remove the screws around the condenser cover. Lift the cover and remove the fan blade and motor (Photo 7). Reinstall the blade and secure the cover. Then repower the unit and see if the fan starts. If it doesn't, you've given it your best shot—it's time to call a pro.
Reinstall the access panel and disconnect block. Turn on the circuit breaker and furnace switch. Then set the thermostat to a lower temperature and wait for the AC to start (see “Be Patient at Startup,” below). The compressor should run and the condenser fan should spin. If the compressor starts but the fan doesn't, the fan motor is most likely shot. Shut off the power and remove the screws around the condenser cover. Lift the cover and remove the fan blade and motor (Photo 7). Reinstall the blade and secure the cover. Then repower the unit and see if the fan starts. If it doesn't, you've given it your best shot—it's time to call a pro.
Having the most energy-efficient system ever built won't matter much if it's not maintained. Lack of maintenance is the number one killer of HVAC systems. Before each cooling season, it's recommended that your system get a professional tune-up. However, there are things you can do in the meantime to make sure your system runs efficiently throughout the year.

Indoor Coil -- The indoor coil is a heat transfer device. It absorbs the heat from the inside of the house and passes it on to the refrigerant and is pumped outside. Dust that builds up on the coil can hamper its ability to absorb heat. High heat transference coils use very thin metal. Airborne chemicals can cause corrosion which leads to leaks. The constant vibration of the compressor can also cause solder joints to weaken and leak. An indoor coil may operate for weeks with a tiny leak, and you may not notice the loss in performance right away. As soon as a leak is made known, it should be replaced or repaired immediately.


HVAC professionals in the US can receive training through formal training institutions, where most earn associate degrees. Training for HVAC technicians includes classroom lectures and hands-on tasks, and can be followed by an apprenticeship wherein the recent graduate works alongside a professional HVAC technician for a temporary period.[33] HVAC techs who have been trained can also be certified in areas such as air conditioning, heat pumps, gas heating, and commercial refrigeration.[34]
AC installation in Fort Smith, AR is vital to comfort, safety, and quality of life. The region is infamous for the unbearable heat that can often become debilitating. This is why investing into an AC to improve the overall lifestyle of your family is well worth the cost. Avoid the constant frustration by seeking the assistance of a professional team.
A little simple math can help determine the size system you need. A rule of thumb is 20 BTUs per square foot. So, a 500 square foot room would need 10,000 BTUs to cool or warm it efficiently. This assumes that you live in a temperate region and have adequate insulation with no energy loss. In the real world, all units have some degree of energy loss. This is reflected in an HVAC system's SEER rating for cooling and AFUE rating for heating.
All modern air conditioning systems, even small window package units, are equipped with internal air filters. These are generally of a lightweight gauze-like material, and must be replaced or washed as conditions warrant. For example, a building in a high dust environment, or a home with furry pets, will need to have the filters changed more often than buildings without these dirt loads. Failure to replace these filters as needed will contribute to a lower heat exchange rate, resulting in wasted energy, shortened equipment life, and higher energy bills; low air flow can result in iced-over evaporator coils, which can completely stop air flow. Additionally, very dirty or plugged filters can cause overheating during a heating cycle, and can result in damage to the system or even fire.
Indoor Coil -- The indoor coil is a heat transfer device. It absorbs the heat from the inside of the house and passes it on to the refrigerant and is pumped outside. Dust that builds up on the coil can hamper its ability to absorb heat. High heat transference coils use very thin metal. Airborne chemicals can cause corrosion which leads to leaks. The constant vibration of the compressor can also cause solder joints to weaken and leak. An indoor coil may operate for weeks with a tiny leak, and you may not notice the loss in performance right away. As soon as a leak is made known, it should be replaced or repaired immediately.
An air conditioning system's SEER is especially important if you live in a climate that changes temperature dramatically. The SEER is determined by the cooling output during the winter divided by its electric input during the winter. The higher the rating, the more efficient it will be. In January of 2006, the U.S. put standards in place for cooling units which are still in effect today. They must have a minimum SEER of 13. So, if you live in a home with a system installed before the new standards went into effect, consider having it replaced. SEER 13 units increase home efficiency by 30 percent.
The heat pump gained popularity in the 1950s in Japan and the United States.[13] Heat pumps can extract heat from various sources, such as environmental air, exhaust air from a building, or from the ground. Heat pumps transfer heat from outside the structure into the air inside. Initially, heat pump HVAC systems were only used in moderate climates, but with improvements in low temperature operation and reduced loads due to more efficient homes, they are increasing in popularity in cooler climates.

PickHVAC Tips: Electricity resistance heat is the most expensive heating type. You don’t want one of these unless you’re heating less than 30 days per year. The upfront cost of an electric furnace is much lower than the cost of a gas furnace. However, operating costs are two to three times higher. If winters are cold where you live, you’ll waste your upfront cost savings in just a few years of high electric bills.
You can adjust for seasons: During the summer, you can have the air conditioner stay off during the cooler morning hours and start cooling the house as everyone gets up and starts moving around. During the winter, you can have your heater stay off while you are away at work and turn on about a half hour or so before you get home so that you are coming home to a nice, warm house.
If you’re purchasing from a big-box store, you can expect to pay approximately $120-$1,000 for a window unit. Window units are appealing for their quick setup and relatively low cost, but they can use more energy over time than central air and only cool the room in which they’re installed. The price will vary depending on the type of air conditioner you buy and its cooling capacity. Window units, which require minimal installation, are one of the most affordable options on the market. Portable air conditioners don’t have the cooling power of a window unit, but they do have the perk of being transportable from room to room. Expect to pay between $225 and $800 for a portable air conditioner, on average. The cost of an air conditioning system with coils, condenser and line (not including installation or ductwork) can range from approximately $2,000 to $4,000 or more. If you don’t have (and don’t want to put in) ducts, a ductless mini-split air conditioner is a good option, although pricey up front. Pricing can range from $650 to $4,250 per unit on average; you’ll need one unit for each room in which you want temperature control.
The heat pump gained popularity in the 1950s in Japan and the United States.[13] Heat pumps can extract heat from various sources, such as environmental air, exhaust air from a building, or from the ground. Heat pumps transfer heat from outside the structure into the air inside. Initially, heat pump HVAC systems were only used in moderate climates, but with improvements in low temperature operation and reduced loads due to more efficient homes, they are increasing in popularity in cooler climates.
Clean the condenser fan blades before the start of the cooling season. Brush any dust or debris off gently and then uncover the condenser coils, gently cleaning the dirty side. Then wrap the motor and other electrical components in plastic bags and gently spray from the inside with a hose. Now check the base pan under the unit and clear it out of any debris that has gathered.
PickHVAC Tips: Electricity resistance heat is the most expensive heating type. You don’t want one of these unless you’re heating less than 30 days per year. The upfront cost of an electric furnace is much lower than the cost of a gas furnace. However, operating costs are two to three times higher. If winters are cold where you live, you’ll waste your upfront cost savings in just a few years of high electric bills.

Outdoor Fan Motor -- The outdoor fan, also called the condenser fan, is exposed to external conditions. As such it is most prone to dust and debris and the extreme weather. In desert climates, the outdoor fan motor is subject to heat not only from normal operation but from the outside temperature as well. As it starts to fail, the fan may work fine in the cooler morning hours but stop by afternoon. This can shut down the entire system for hours. When they stop running completely, your air conditioner will no longer work. Running a faulty fan will lead to compressor failure, which is a very costly repair.


Although HVAC is executed in individual buildings or other enclosed spaces (like NORAD's underground headquarters), the equipment involved is in some cases an extension of a larger district heating (DH) or district cooling (DC) network, or a combined DHC network. In such cases, the operating and maintenance aspects are simplified and metering becomes necessary to bill for the energy that is consumed, and in some cases energy that is returned to the larger system. For example, at a given time one building may be utilizing chilled water for air conditioning and the warm water it returns may be used in another building for heating, or for the overall heating-portion of the DHC network (likely with energy added to boost the temperature).[4][5][6]
If your compressor doesn’t have an overload button and you hear it humming or buzzing, poke a screwdriver or stick down through the top grille and try to spin the fan blades clockwise. If doing this gives the fan enough of a boost to get it going, the unit has a faulty capacitor that must be replaced. See How to Test and Replace an AC Run Capacitor, above.
×