An air conditioner's compressor contains a refrigerant. As it works, it sends this refrigerant through the system. As warm air blows across the coil that carries this refrigerant, the heat transfers to the refrigerant (cool always absorbs warm). A fan moves the cooled air through the ducting and out of vents that lead into the rooms of your house. The refrigerant returns to the compressor where the absorbed heat is moved outside. The refrigerant is then sent through the coil once again to continue the cycle.
Air conditioning and refrigeration are provided through the removal of heat. Heat can be removed through radiation, convection, or conduction. Refrigeration conduction media such as water, air, ice, and chemicals are referred to as refrigerants. A refrigerant is employed either in a heat pump system in which a compressor is used to drive thermodynamic refrigeration cycle, or in a free cooling system which uses pumps to circulate a cool refrigerant (typically water or a glycol mix).
Heaters exist for various types of fuel, including solid fuels, liquids, and gases. Another type of heat source is electricity, normally heating ribbons composed of high resistance wire (see Nichrome). This principle is also used for baseboard heaters and portable heaters. Electrical heaters are often used as backup or supplemental heat for heat pump systems.
They work less jobs, thus increasing profits – think about it…if they got only half of the jobs, then they only pay half of the money required to pay employees, expenses, etc., but still have the same amount of net profit. In fact, if you do the math, they actually make more profit that their competitors do…twice as much, once you factor in their savings form only doing half of the jobs at the same amount of profit (Total Revenue – (half the normal expenses) = twice the profit). In other words, they save money by doing half of the jobs as others, for the same profit, thus increasing their overall profits.
If you’re anything like most of our readers, you’ve spent hours online researching HVAC information in preparation for replacing your old heater or air conditioner. I’m the same way; it’s a big investment! You may want to consider saving yourself some time and money by getting an HVAC-Facts Report from this online HVAC installation cost calculator.  Take a look:
Central home air conditioner service systems consist of two major components: a condensing unit that sits outside your house, and the evaporator coil (often referred to as an A-coil) that sits in the plenum of your furnace or air handler. The refrigerant in the A-coil picks up the heat from your home and moves it to the outdoor condensing unit. The condensing unit fan blows outside air through the condensing coil to remove the heat. The condensing unit houses the three parts replaceable by a DIYer: the AC contactor, the start/run capacitor(s) and the condenser fan motor. The condensing unit also houses the compressor, but only a pro can replace that. The A-coil has no parts that can be serviced by a DIYer.
Air conditioner size is measured in “tons.” However, the tonnage of an HVAC unit is not actually based on its weight. A “ton” is simply a measure of an air conditioner’s ability to cool your home. One ton is the ability of your air conditioning system to cool 12,000 BTUs (BTU stands for British Thermal Unit) in an hour. Likewise, a “2-ton” central air conditioner is able to cool 24,000 BTUs per hour.
ISO 16813:2006 is one of the ISO building environment standards.[31] It establishes the general principles of building environment design. It takes into account the need to provide a healthy indoor environment for the occupants as well as the need to protect the environment for future generations and promote collaboration among the various parties involved in building environmental design for sustainability. ISO16813 is applicable to new construction and the retrofit of existing buildings.[32]
Pro HVAC company Southern Comfort Mechanical says on its blog, “If there’s mold growth inside the handler due to excess moisture, algae in the condenser drain line or a dirty evaporator coil, it can negatively impact your AC unit’s efficiency. The filters inside may also build up excess dirt and become clogged, which will also make your AC [or heat pump] waste energy trying to sustain the cool climate inside your home.” These issues are easy to solve. They don’t require replacing the air handler.

Fuses -- Anyone who has worked with electrical systems knows all about fuses and how they fail. They can burn out over time, may just be loose, or can blow out during an electrical storm or due to overload from another failed component. Of course, that's what they're supposed to do; they stop surges from going through and damaging the rest of the system. When a fuse fails, whatever system it was protecting will stop working.

Central, "all-air" air-conditioning systems (or package systems) with a combined outdoor condenser/evaporator unit are often installed in North American residences, offices, and public buildings, but are difficult to retrofit (install in a building that was not designed to receive it) because of the bulky air ducts required. (Minisplit ductless systems are used in these situations.) Outside of North America, packaged systems are only used in limited applications involving large indoor space such as stadiums, theatres or exhibition halls.

Asbestos removal tip.  Don’t trust any HVAC installation company that says that they will remove asbestos for you. They will do either one of two things: remove it and do a horrible job because they don’t know how (an illegal act in California, finable by up to $250,000), or they will say they did and never actually do it, which is dangerous to your health. Any HVAC contractor worth their weight will know not to touch it. Call an asbestos abatement company – it should cost around $500-$1,000, and your HVAC installation company will come in right after them and do the installation to decrease cost and inconvenience.

I call to follow up at the end of the next day and she said that she has not been able to get in touch with the owner.  By this time, I am starting to get frustrated because I am starting to get the run around.  I question her if I am even on the schedule or if they attempted to schedule a crane.  She says they are extremely busy and that she does not know.  So I say, basically I have waited over 2 weeks and you have not put me on the schedule and I am at the end of the install line.  No answer.  I tell her to talk to her boss and find out what is happening, and I will think about what direction I want to move in at this point.  
Without proper ventilation, carbon monoxide can be lethal at concentrations of 1000 ppm (0.1%). However, at several hundred ppm, carbon monoxide exposure induces headaches, fatigue, nausea, and vomiting. Carbon monoxide binds with hemoglobin in the blood, forming carboxyhemoglobin, reducing the blood's ability to transport oxygen. The primary health concerns associated with carbon monoxide exposure are its cardiovascular and neurobehavioral effects. Carbon monoxide can cause atherosclerosis (the hardening of arteries) and can also trigger heart attacks. Neurologically, carbon monoxide exposure reduces hand to eye coordination, vigilance, and continuous performance. It can also affect time discrimination.[15]

An important component of natural ventilation is air change rate or air changes per hour: the hourly rate of ventilation divided by the volume of the space. For example, six air changes per hour means an amount of new air, equal to the volume of the space, is added every ten minutes. For human comfort, a minimum of four air changes per hour is typical, though warehouses might have only two. Too high of an air change rate may be uncomfortable, akin to a wind tunnel which have thousands of changes per hour. The highest air change rates are for crowded spaces, bars, night clubs, commercial kitchens at around 30 to 50 air changes per hour.[17]
Ductwork pinging or popping. If you hear a pinging or popping sound coming from metal ductwork, this may be caused by thermal expansion or by air blowing past a loose flap of metal. Track along the duct runs, listening for the sound. If you find it, make a small dent in the sheet metal to provide a more rigid surface that’s less likely to move as it heats and cools.