An EER certifies the cooling efficiency of HVAC units. It's calculated by the rate of the cooling in British thermal units (Btus) per hour and divided by the rate of energy input in watts at a specific temperature. The calculation goes as BtuH/WATT at dry bulb (db) versus wet bulb (wb) temperatures. The optimal rating for a cooling unit is about 80db/67wb inside and 95db/75wb outside.
If your compressor doesn’t have an overload button and you hear it humming or buzzing, poke a screwdriver or stick down through the top grille and try to spin the fan blades clockwise. If doing this gives the fan enough of a boost to get it going, the unit has a faulty capacitor that must be replaced. See How to Test and Replace an AC Run Capacitor, above.
Your contractor will do a load calculation to determine the proper central air conditioning unit for your home. This calculation accounts for the climate, size, shape and orientation of your home, as well as its square footage. A professional will also look at the insulation, windows, walls, floors and other materials that compose your home. He/she will then examine any leaks, seals and existing ducts or vents.

Air conditioners can create a lot of water because they remove moisture from the air. To get rid of this, they have a [usually plastic] drain pipe that comes out of the side of the air handler. Over time, algae can block this pipe and, when it does, the AC won’t work. In fact, some condensate drains have a float switch that won’t let the AC run if water backs-up. Water can also puddle around the unit or flood the area. To deal with condensate problems, please see Air Conditioner Leaks Water, below.
Although HVAC is executed in individual buildings or other enclosed spaces (like NORAD's underground headquarters), the equipment involved is in some cases an extension of a larger district heating (DH) or district cooling (DC) network, or a combined DHC network. In such cases, the operating and maintenance aspects are simplified and metering becomes necessary to bill for the energy that is consumed, and in some cases energy that is returned to the larger system. For example, at a given time one building may be utilizing chilled water for air conditioning and the warm water it returns may be used in another building for heating, or for the overall heating-portion of the DHC network (likely with energy added to boost the temperature).[4][5][6]
Whether you’re looking for air conditioning maintenance, air conditioner repair, or a new air conditioning system, Sears Home Services can help. We’re your best, most-trusted option for fast, quick, and easy local service, repair, and maintenance of your home air conditioning system. If your air conditioner isn’t cooling or your central air conditioner is leaking water, we’ll connect you to the best local AC repair service technicians in the business.We have local technicians in your neighborhood that are highly trained, licensed, vetted, and guaranteed to help fix all of your air conditioning needs.

Air conditioners can create a lot of water because they remove moisture from the air. To get rid of this, they have a [usually plastic] drain pipe that comes out of the side of the air handler. Over time, algae can block this pipe and, when it does, the AC won’t work. In fact, some condensate drains have a float switch that won’t let the AC run if water backs-up. Water can also puddle around the unit or flood the area. To deal with condensate problems, please see Air Conditioner Leaks Water, below.

×