Air conditioner size is measured in “tons.” However, the tonnage of an HVAC unit is not actually based on its weight. A “ton” is simply a measure of an air conditioner’s ability to cool your home. One ton is the ability of your air conditioning system to cool 12,000 BTUs (BTU stands for British Thermal Unit) in an hour. Likewise, a “2-ton” central air conditioner is able to cool 24,000 BTUs per hour.
Window air conditioners cost less than central units, averaging $300. These systems generally suffice to keep a room cool on warm spring and summer days. They can bring added comfort for a reasonable price but are less powerful than a central air conditioner. If you have a bigger home with multiple rooms, you will probably need to have a larger system installed. Central air can cool several rooms at once, while window AC units usually only cover one or two rooms at a time.
The cost to replace a central air conditioner is about $5,000. However, this price varies depending on the size of your home and the difficulty of the project. It can cost as much as $12,500 to replace an AC unit. The labor required to remove and dispose of the old system adds to the price. The size of your home, brand of AC unit and ductwork complexity can all raise the cost as well.
Air conditioning and refrigeration are provided through the removal of heat. Heat can be removed through radiation, convection, or conduction. Refrigeration conduction media such as water, air, ice, and chemicals are referred to as refrigerants. A refrigerant is employed either in a heat pump system in which a compressor is used to drive thermodynamic refrigeration cycle, or in a free cooling system which uses pumps to circulate a cool refrigerant (typically water or a glycol mix).

All information provided is provided for information purposes only and does not constitute a legal contract between Wilson's Heating & Air Conditioning and any person or entity unless otherwise specified. Information is subject to change without prior notice. Although every reasonable effort is made to present current and accurate information, LinkNow™ Media makes no guarantees of any kind.


Fast forward 1 year and 1 week and the circuit board that HVAC Service had installed has failed again. They came out and said that it failed from water condensation dripping onto it, so we needed to replace it and reroute the pipes to prevent future water damage.  That would cost double what I paid last year.  Why didn't they fix the problem last year at the initial repair instead of putting in a circuit board that was bound to fail again?!? They were strongly recommending that the furnace be completely replace for a huge fee to avoid the same thing happening again.  I paid $59 for them to tell me they didn't fix it right last year. This didn't feel right, so I sought a second opinion.

Contact/Relay -- Relays are electronically controlled switches that activate the various components of your HVAC system. They manage everything from the power going to the motor to automatic dampers, humidifiers, etc. Most of them are controlled by the thermostat. The most common failure for a relay is being stuck in the "open" position. Separated from its assigned contact point, it fails to complete the connection and send the message to whatever it was supposed to operate. This failure usually occurs from use over time. Each time a relay connects and sends its signal, the electrical arcing from point to point eventually causes wear and tear.
CIBSE publishes several guides to HVAC design relevant to the UK market, and also the Republic of Ireland, Australia, New Zealand and Hong Kong. These guides include various recommended design criteria and standards, some of which are cited within the UK building regulations, and therefore form a legislative requirement for major building services works. The main guides are:
Contact/Relay -- Relays are electronically controlled switches that activate the various components of your HVAC system. They manage everything from the power going to the motor to automatic dampers, humidifiers, etc. Most of them are controlled by the thermostat. The most common failure for a relay is being stuck in the "open" position. Separated from its assigned contact point, it fails to complete the connection and send the message to whatever it was supposed to operate. This failure usually occurs from use over time. Each time a relay connects and sends its signal, the electrical arcing from point to point eventually causes wear and tear.
Pro HVAC company Southern Comfort Mechanical says on its blog, “If there’s mold growth inside the handler due to excess moisture, algae in the condenser drain line or a dirty evaporator coil, it can negatively impact your AC unit’s efficiency. The filters inside may also build up excess dirt and become clogged, which will also make your AC [or heat pump] waste energy trying to sustain the cool climate inside your home.” These issues are easy to solve. They don’t require replacing the air handler.
Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −70 °F (−57 °C) low temperature or cool a building in the highest temperature ever recorded in the US—134 °F (57 °C) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A few feet below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 6 feet (1.8 m) underground, temperatures generally only range from 45 to 75 °F (7 to 24 °C).
Central, "all-air" air-conditioning systems (or package systems) with a combined outdoor condenser/evaporator unit are often installed in North American residences, offices, and public buildings, but are difficult to retrofit (install in a building that was not designed to receive it) because of the bulky air ducts required. (Minisplit ductless systems are used in these situations.) Outside of North America, packaged systems are only used in limited applications involving large indoor space such as stadiums, theatres or exhibition halls.
HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels and senior living facilities, medium to large industrial and office buildings such as skyscrapers and hospitals, vehicles such as cars, trains, airplanes, ships and submarines, and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

Contact/Relay -- Relays are electronically controlled switches that activate the various components of your HVAC system. They manage everything from the power going to the motor to automatic dampers, humidifiers, etc. Most of them are controlled by the thermostat. The most common failure for a relay is being stuck in the "open" position. Separated from its assigned contact point, it fails to complete the connection and send the message to whatever it was supposed to operate. This failure usually occurs from use over time. Each time a relay connects and sends its signal, the electrical arcing from point to point eventually causes wear and tear.
Cost Factors: The size of the unit, its efficiency and it’s single-stage, two-stage or variable-capacity are the top cost factors. Features like communicating technology and improved dehumidification performance also affect the price. Learn more about communicating technology here including the pros and cons, before being agreeing to a communicating system.
Multiple inventions within this time frame preceded the beginnings of first comfort air conditioning system, which was designed in 1902 by Alfred Wolff (Cooper, 2003) for the New York Stock Exchange, while Willis Carrier equipped the Sacketts-Wilhems Printing Company with the process AC unit the same year. Coyne College was the first school to offer HVAC training in 1899.[12]

Air conditioners can create a lot of water because they remove moisture from the air. To get rid of this, they have a [usually plastic] drain pipe that comes out of the side of the air handler. Over time, algae can block this pipe and, when it does, the AC won’t work. In fact, some condensate drains have a float switch that won’t let the AC run if water backs-up. Water can also puddle around the unit or flood the area. To deal with condensate problems, please see Air Conditioner Leaks Water, below.
×