Central, "all-air" air-conditioning systems (or package systems) with a combined outdoor condenser/evaporator unit are often installed in North American residences, offices, and public buildings, but are difficult to retrofit (install in a building that was not designed to receive it) because of the bulky air ducts required. (Minisplit ductless systems are used in these situations.) Outside of North America, packaged systems are only used in limited applications involving large indoor space such as stadiums, theatres or exhibition halls.
Prices, promotions, styles, and availability may vary. Our local stores do not honor online pricing. Prices and availability of products and services are subject to change without notice. Errors will be corrected where discovered, and Lowe's reserves the right to revoke any stated offer and to correct any errors, inaccuracies or omissions including after an order has been submitted.
The performance of vapor compression refrigeration cycles[26] is limited by thermodynamics. These air conditioning and heat pump devices move heat rather than convert it from one form to another, so thermal efficiencies do not appropriately describe the performance of these devices. The Coefficient-of-Performance (COP) measures performance, but this dimensionless measure has not been adopted. Instead, the Energy Efficiency Ratio (EER) has traditionally been used to characterize the performance of many HVAC systems. EER is the Energy Efficiency Ratio based on a 35 °C (95 °F) outdoor temperature. To more accurately describe the performance of air conditioning equipment over a typical cooling season a modified version of the EER, the Seasonal Energy Efficiency Ratio (SEER), or in Europe the ESEER, is used. SEER ratings are based on seasonal temperature averages instead of a constant 35 °C (95 °F) outdoor temperature. The current industry minimum SEER rating is 14 SEER.[27][dead link]
Bigger is not necessarily better when it comes to HVAC systems, and smaller isn't always more efficient. If you have too small of a system, your system will be running constantly as it tries to keep up with the temperature. If you have too large of a system, it won't run long enough to keep up with the humidity. In order to handle both temperature and humidity efficiently, an HVAC system should run for around 30 minutes at a time. If your system is staying on too long or shutting off after only around 10 minutes, you are not getting efficient performance.
Ground source, or geothermal, heat pumps are similar to ordinary heat pumps, but instead of transferring heat to or from outside air, they rely on the stable, even temperature of the earth to provide heating and air conditioning. Many regions experience seasonal temperature extremes, which would require large-capacity heating and cooling equipment to heat or cool buildings. For example, a conventional heat pump system used to heat a building in Montana's −70 °F (−57 °C) low temperature or cool a building in the highest temperature ever recorded in the US—134 °F (57 °C) in Death Valley, California, in 1913 would require a large amount of energy due to the extreme difference between inside and outside air temperatures. A few feet below the earth's surface, however, the ground remains at a relatively constant temperature. Utilizing this large source of relatively moderate temperature earth, a heating or cooling system's capacity can often be significantly reduced. Although ground temperatures vary according to latitude, at 6 feet (1.8 m) underground, temperatures generally only range from 45 to 75 °F (7 to 24 °C).
Many disconnect blocks contain two cartridge fuses. Check them before you proceed with repairs (Photo 3). A blown fuse is a sign of a failing part inside the condensing unit. So don't just replace it and think you've solved the problem. Instead, replace the parts we show here. Then install new fuses and fire up the unit. If it blows again, call a pro—you've got more serious issues.
Monday the following week, no phone calls, or follow up.  I call to get an update and am told that they cannot install my system because they don't have time.  I ask what does that mean, one year? One week? Until the end of summer they say.  What does that mean I ask?  They say at the end of September.  I say thank you for wasting 1 month of my time.
DIY: We don’t recommend a DIY approach. Depending on the system, working with gas, electricity and refrigerant create dangers. Beyond that, it is essential that split system components be selected for compatibility. DIY installation of an HVAC system will void the warranty of most brands. The manufacturers won’t stand behind the warranty when anyone other than a certified installer does the work. This is true since improper installation is the main cause of poor system performance and mechanical breakdowns.
Natural ventilation is the ventilation of a building with outside air without using fans or other mechanical systems. It can be via operable windows, louvers, or trickle vents when spaces are small and the architecture permits. In more complex schemes, warm air is allowed to rise and flow out high building openings to the outside (stack effect), causing cool outside air to be drawn into low building openings. Natural ventilation schemes can use very little energy, but care must be taken to ensure comfort. In warm or humid climates, maintaining thermal comfort solely via natural ventilation might not be possible. Air conditioning systems are used, either as backups or supplements. Air-side economizers also use outside air to condition spaces, but do so using fans, ducts, dampers, and control systems to introduce and distribute cool outdoor air when appropriate.
A little simple math can help determine the size system you need. A rule of thumb is 20 BTUs per square foot. So, a 500 square foot room would need 10,000 BTUs to cool or warm it efficiently. This assumes that you live in a temperate region and have adequate insulation with no energy loss. In the real world, all units have some degree of energy loss. This is reflected in an HVAC system's SEER rating for cooling and AFUE rating for heating.
Natural ventilation is the ventilation of a building with outside air without using fans or other mechanical systems. It can be via operable windows, louvers, or trickle vents when spaces are small and the architecture permits. In more complex schemes, warm air is allowed to rise and flow out high building openings to the outside (stack effect), causing cool outside air to be drawn into low building openings. Natural ventilation schemes can use very little energy, but care must be taken to ensure comfort. In warm or humid climates, maintaining thermal comfort solely via natural ventilation might not be possible. Air conditioning systems are used, either as backups or supplements. Air-side economizers also use outside air to condition spaces, but do so using fans, ducts, dampers, and control systems to introduce and distribute cool outdoor air when appropriate.
Heaters exist for various types of fuel, including solid fuels, liquids, and gases. Another type of heat source is electricity, normally heating ribbons composed of high resistance wire (see Nichrome). This principle is also used for baseboard heaters and portable heaters. Electrical heaters are often used as backup or supplemental heat for heat pump systems.
The cost to replace a central air conditioner is about $5,000. However, this price varies depending on the size of your home and the difficulty of the project. It can cost as much as $12,500 to replace an AC unit. The labor required to remove and dispose of the old system adds to the price. The size of your home, brand of AC unit and ductwork complexity can all raise the cost as well.
Consider what kind of heating and cooling system you want installed for the square footage of your home. Do you want a full system with a thermostat or a specific machine for the summer like a swamp cooler? Do you need a new furnace just for the winter? For any of these projects, the cost will vary depending on the quality, style and machine size you choose. If you have a tight budget, think of going smaller and upgrading over time. For example, if you can't afford to convert your entire home to solar power, you may want to consider only utilizing it to heat your water. Some other types of heating systems are:

Central home air conditioner service systems consist of two major components: a condensing unit that sits outside your house, and the evaporator coil (often referred to as an A-coil) that sits in the plenum of your furnace or air handler. The refrigerant in the A-coil picks up the heat from your home and moves it to the outdoor condensing unit. The condensing unit fan blows outside air through the condensing coil to remove the heat. The condensing unit houses the three parts replaceable by a DIYer: the AC contactor, the start/run capacitor(s) and the condenser fan motor. The condensing unit also houses the compressor, but only a pro can replace that. The A-coil has no parts that can be serviced by a DIYer.
Furnace Circuit Board -- The furnace circuit board controls a variety of functions. It not only handles the regular operation of the furnace, it also monitors the furnace's various safety circuits. Over time, vibrations from the furnace can weaken solder point and cause them to separate. Dirt and debris can cause short-circuits that damage the board. Failure of the circuit board can cause a variety of effects ranging from the fan not turning on to the complete shutdown of the furnace.
The belt should slip right into place. If it seems to be too tight or difficult to set in place, it may be necessary to adjust the motor mount to provide more slack. Then you can re-tighten the tension once the belt is in place. Check the manufacturer’s specifications for proper tension—in most cases, the belt should deflect about an inch when you press down on it.
×